Despite recent progress towards scaling up multimodal vision-language models, these models are still known to struggle on compositional generalization benchmarks such as Winoground. We find that a critical component lacking from current vision-language models is relation-level alignment: the ability to match directional semantic relations in text (e.g., "mug in grass") with spatial relationships in the image (e.g., the position of the mug relative to the grass). To tackle this problem, we show that relation alignment can be enforced by encouraging the directed language attention from 'mug' to 'grass' (capturing the semantic relation 'in') to match the directed visual attention from the mug to the grass. Tokens and their corresponding objects are softly identified using the cross-modal attention. We prove that this notion of soft relation alignment is equivalent to enforcing congruence between vision and language attention matrices under a 'change of basis' provided by the cross-modal attention matrix. Intuitively, our approach projects visual attention into the language attention space to calculate its divergence from the actual language attention, and vice versa. We apply our Cross-modal Attention Congruence Regularization (CACR) loss to UNITER and improve on the state-of-the-art approach to Winoground.
translated by 谷歌翻译
雅典娜2.0是一家亚历克萨奖的社会奖,这是最后两个Alexa奖奖挑战的决赛。雅典娜成功的一个原因是其新的对话管理战略,它允许它动态构建组件模块的对话和响应,导致每个互动的新型对话。在这里,我们在20/21竞争期间描述了Athena的Alexa奖的系统设计和性能。雅典娜的活跃演示以及视频录音将挑起对话AI的艺术状态的讨论。
translated by 谷歌翻译
Embedding words in vector space is a fundamental first step in state-of-the-art natural language processing (NLP). Typical NLP solutions employ pre-defined vector representations to improve generalization by co-locating similar words in vector space. For instance, Word2Vec is a self-supervised predictive model that captures the context of words using a neural network. Similarly, GLoVe is a popular unsupervised model incorporating corpus-wide word co-occurrence statistics. Such word embedding has significantly boosted important NLP tasks, including sentiment analysis, document classification, and machine translation. However, the embeddings are dense floating-point vectors, making them expensive to compute and difficult to interpret. In this paper, we instead propose to represent the semantics of words with a few defining words that are related using propositional logic. To produce such logical embeddings, we introduce a Tsetlin Machine-based autoencoder that learns logical clauses self-supervised. The clauses consist of contextual words like "black," "cup," and "hot" to define other words like "coffee," thus being human-understandable. We evaluate our embedding approach on several intrinsic and extrinsic benchmarks, outperforming GLoVe on six classification tasks. Furthermore, we investigate the interpretability of our embedding using the logical representations acquired during training. We also visualize word clusters in vector space, demonstrating how our logical embedding co-locate similar words.
translated by 谷歌翻译
Attention mechanisms form a core component of several successful deep learning architectures, and are based on one key idea: ''The output depends only on a small (but unknown) segment of the input.'' In several practical applications like image captioning and language translation, this is mostly true. In trained models with an attention mechanism, the outputs of an intermediate module that encodes the segment of input responsible for the output is often used as a way to peek into the `reasoning` of the network. We make such a notion more precise for a variant of the classification problem that we term selective dependence classification (SDC) when used with attention model architectures. Under such a setting, we demonstrate various error modes where an attention model can be accurate but fail to be interpretable, and show that such models do occur as a result of training. We illustrate various situations that can accentuate and mitigate this behaviour. Finally, we use our objective definition of interpretability for SDC tasks to evaluate a few attention model learning algorithms designed to encourage sparsity and demonstrate that these algorithms help improve interpretability.
translated by 谷歌翻译
Agile robotics presents a difficult challenge with robots moving at high speeds requiring precise and low-latency sensing and control. Creating agile motion that accomplishes the task at hand while being safe to execute is a key requirement for agile robots to gain human trust. This requires designing new approaches that are flexible and maintain knowledge over world constraints. In this paper, we consider the problem of building a flexible and adaptive controller for a challenging agile mobile manipulation task of hitting ground strokes on a wheelchair tennis robot. We propose and evaluate an extension to work done on learning striking behaviors using a probabilistic movement primitive (ProMP) framework by (1) demonstrating the safe execution of learned primitives on an agile mobile manipulator setup, and (2) proposing an online primitive refinement procedure that utilizes evaluative feedback from humans on the executed trajectories.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
The paper presents a cross-domain review analysis on four popular review datasets: Amazon, Yelp, Steam, IMDb. The analysis is performed using Hadoop and Spark, which allows for efficient and scalable processing of large datasets. By examining close to 12 million reviews from these four online forums, we hope to uncover interesting trends in sales and customer sentiment over the years. Our analysis will include a study of the number of reviews and their distribution over time, as well as an examination of the relationship between various review attributes such as upvotes, creation time, rating, and sentiment. By comparing the reviews across different domains, we hope to gain insight into the factors that drive customer satisfaction and engagement in different product categories.
translated by 谷歌翻译
Heart failure remains a major public health challenge with growing costs. Ejection fraction (EF) is a key metric for the diagnosis and management of heart failure however estimation of EF using echocardiography remains expensive for the healthcare system and subject to intra/inter operator variability. While chest x-rays (CXR) are quick, inexpensive, and require less expertise, they do not provide sufficient information to the human eye to estimate EF. This work explores the efficacy of computer vision techniques to predict reduced EF solely from CXRs. We studied a dataset of 3488 CXRs from the MIMIC CXR-jpg (MCR) dataset. Our work establishes benchmarks using multiple state-of-the-art convolutional neural network architectures. The subsequent analysis shows increasing model sizes from 8M to 23M parameters improved classification performance without overfitting the dataset. We further show how data augmentation techniques such as CXR rotation and random cropping further improves model performance another ~5%. Finally, we conduct an error analysis using saliency maps and Grad-CAMs to better understand the failure modes of convolutional models on this task.
translated by 谷歌翻译
The tropical cyclone formation process is one of the most complex natural phenomena which is governed by various atmospheric, oceanographic, and geographic factors that varies with time and space. Despite several years of research, accurately predicting tropical cyclone formation remains a challenging task. While the existing numerical models have inherent limitations, the machine learning models fail to capture the spatial and temporal dimensions of the causal factors behind TC formation. In this study, a deep learning model has been proposed that can forecast the formation of a tropical cyclone with a lead time of up to 60 hours with high accuracy. The model uses the high-resolution reanalysis data ERA5 (ECMWF reanalysis 5th generation), and best track data IBTrACS (International Best Track Archive for Climate Stewardship) to forecast tropical cyclone formation in six ocean basins of the world. For 60 hours lead time the models achieve an accuracy in the range of 86.9% - 92.9% across the six ocean basins. The model takes about 5-15 minutes of training time depending on the ocean basin, and the amount of data used and can predict within seconds, thereby making it suitable for real-life usage.
translated by 谷歌翻译
The rectified linear unit (ReLU) is a highly successful activation function in neural networks as it allows networks to easily obtain sparse representations, which reduces overfitting in overparameterized networks. However, in network pruning, we find that the sparsity introduced by ReLU, which we quantify by a term called dynamic dead neuron rate (DNR), is not beneficial for the pruned network. Interestingly, the more the network is pruned, the smaller the dynamic DNR becomes during optimization. This motivates us to propose a method to explicitly reduce the dynamic DNR for the pruned network, i.e., de-sparsify the network. We refer to our method as Activating-while-Pruning (AP). We note that AP does not function as a stand-alone method, as it does not evaluate the importance of weights. Instead, it works in tandem with existing pruning methods and aims to improve their performance by selective activation of nodes to reduce the dynamic DNR. We conduct extensive experiments using popular networks (e.g., ResNet, VGG) via two classical and three state-of-the-art pruning methods. The experimental results on public datasets (e.g., CIFAR-10/100) suggest that AP works well with existing pruning methods and improves the performance by 3% - 4%. For larger scale datasets (e.g., ImageNet) and state-of-the-art networks (e.g., vision transformer), we observe an improvement of 2% - 3% with AP as opposed to without. Lastly, we conduct an ablation study to examine the effectiveness of the components comprising AP.
translated by 谷歌翻译